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Abstract. The author has proposed a circuit-modeling technique for electrically-very-small wireless 
systems called the impedance expansion method (IEM). The IEM is based on expanding the 
self-/mutual impedances in the method of moments into the Laurent series with respect to the 
complex angular frequency. This paper describes the basic concept of the IEM, and then shows an 
example application to a wireless power transfer system.  

1. Introduction 
Electrically-very-small wireless systems are widely used. Typical examples include electrodes for 

intrabody communications [1], coils for wireless power transfer (WPT) systems [2], etc. It is well 
known that undesired resonances or radiations may occur at the usual operating frequencies of these 
devices, and they affect their operating characteristics or cause noises [3]. Besides, the 
electromagnetic characteristics of electrically-very-small devices may be approximated by equivalent 
circuits. This approach has the benefits such that: 

1. small-scale circuit models can easily be analyzed via theoretical approaches, which give us an 
insight on the operation mechanism of the devices; 

2. the interaction between the electromagnetic fields and the non-linear electronic circuits can be 
analyzed only by importing the equivalent-circuit parameters into versatile circuit simulators. 

Recently, the author has proposed a circuit-modeling technique for electrically-very-small wireless 
systems called the impedance expansion method (IEM) [4]–[8]. The IEM is based on expanding the 
self-/mutual impedances in the method of moments (MoM) [9] into the Laurent series with respect to 
the complex angular frequency. This paper describes the basic concept of the IEM, and then shows 
an example application to a wireless power transfer system. 

2. Basic Concept 

In the MoM, the current distributions 𝑱(𝒓) are expanded as follows: 

 𝑱(𝒓) = &𝐼(𝑭((𝒓)
*

(+,

,  

where 𝒓  is the observation point, 𝐼(  is the 𝑛 th current coefficient, 𝑭((𝒓) is the 𝑛 th basis 
function, and 𝑁 is the number of basis functions. The current coefficients can be obtained by 
solving the following system of linear equations. 

 &𝑍1(𝐼(

*

(+,

= 𝑉1, 𝑚 = 1,… , 𝑁, (1) 
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where 𝑉1 is the 𝑚th voltage coefficient, and 𝑍1( is the self-/mutual impedance between basis 
functions 𝑭1(𝒓) and 𝑭((𝒓), which is expressed as follows: 

 
𝑍1( = 𝑠

𝜁
4𝜋𝑐

; ; 𝑭1(𝒓) ⋅ 𝑭((𝒓=)
𝑒?@A/C

𝑅 𝑑𝑆′𝑑𝑆
HH

+
1
𝑠
𝜁
4𝜋𝑐

; ; [∇ ⋅ 𝑭1(𝒓)] ⋅ [∇′ ⋅ 𝑭((𝒓=)]
𝑒?@A/C

𝑅 𝑑𝑆′𝑑𝑆
HH

, 
(2) 

where 𝜁 is the wave impedance, 𝑐 is the speed of light, 𝑅 = |𝒓 − 𝒓’| is the distance between the 
observation point 𝒓 and the source point 𝒓’, and 𝑆 is the surface of conductors. In addition, the 
primes denote functions or operators with respect to the observation point 𝒓′. 

Hereinafter we assume that the basis functions are real and independent of the frequency. By 
expanding the exponential functions in Eq. (2) into the Taylor series, we get the Laurent series 
expansion of 𝑍1( as follows: 

 𝑍1( = & 𝑠P𝑍1(
(P)

Q

P+?,

, (3) 

where the coefficients for the respective powers are expressed as follows: 

 𝑍1(
(?,) =

𝜁𝑐
4𝜋

; ; [∇ ⋅ 𝑭1(𝒓)] ⋅ [∇′ ⋅ 𝑭((𝒓=)]
1
𝑅 𝑑𝑆′𝑑𝑆HH

,  

 𝑍1(
(R) = 0,  

 
𝑍1(
(P) =

(−1)P?,𝜁
(𝑖 − 1)! 4𝜋𝑐P

; ; 𝑭1(𝒓) ⋅ 𝑭((𝒓=)𝑅P?V𝑑𝑆′𝑑𝑆
HH

+
(−1)PW,𝜁

(𝑖 + 1)! 4𝜋𝑐P
; ; [∇ ⋅ 𝑭1(𝒓)] ⋅ [∇= ⋅ 𝑭((𝒓=)]𝑅P𝑑𝑆′𝑑𝑆

HH
, 

 

where 𝑖 ≥ 1. It is notable that several low-order terms in Eq. (3) have explicit physical meanings. 
The lowest-order term 𝑠?,𝑍1(

(?,) is equivalent to the impedance of the capacitance 

 𝐶 =
1

𝑍1(
(?,) = Z

𝜁𝑐
4𝜋

; ; [∇ ⋅ 𝑭1(𝒓)] ⋅ [∇= ⋅ 𝑭((𝒓=)]
1
𝑅 𝑑𝑆

=𝑑𝑆
HH

[
?,

.  

Similarly, the term 𝑠𝑍1(
(,)  is equivalent to the impedance of the inductance 

 
𝐿 = 𝑍1(

(,) =
𝜁
4𝜋𝑐

; ; 𝑭1(𝒓) ⋅ 𝑭((𝒓=)
1
𝑅 𝑑𝑆′𝑑𝑆HH

+
𝜁
8𝜋𝑐

; ; [∇ ⋅ 𝑭1(𝒓)] ⋅ [∇= ⋅ 𝑭((𝒓=)]𝑅𝑑𝑆′𝑑𝑆
HH

. 
 

If the structures of conductors are complicated, a large number of basis functions are required to 
expand the current distributions on conductors. This results in a large-scale equivalent circuit. To 
reduce the scale of equivalent circuit, it is useful to expand the current distributions into a small 
number of modal currents of conductors. 

Here, a problem involving a sole conductor is described to show the concept of the eigenmode 
analysis for the IEM. The self-/mutual impedances, the current coefficients, and the voltage 
coefficients in Eq. (1) are rewritten in a matrix/vector form as follows: 

 𝒁̀ = & 𝑠P𝒁̀(P)
Q

P+?,

= & 𝑠P a
𝑍,,
(P) ⋯ 𝑍,*

(P)

⋮ ⋱ ⋮
𝑍*,
(P) ⋯ 𝑍**

(P)
e

Q

P+?,

,  

 𝑰 = [𝐼, ⋯ 𝐼*], 𝑽 = [𝑉, ⋯ 𝑉*].  
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If the analysis object is electrically very small, 𝒁̀ can reasonably be approximated only by the 
components that are proportional to 𝑠?, and 𝑠. Thus, by using 𝒁̀ ≃ 𝑠?,𝒁̀(?,) + 𝑠𝒁̀(,), Eq. (1) can 
be rewritten as follows: 
 𝑠?,𝒁̀(?,)𝑰 + 𝑠𝒁̀(,)𝑰 = 𝑽, (4) 
When 𝑠 and 𝑰 have specific values, the first and second terms on the left-hand side in Eq. (4) 
cancel each other and resonate. To obtain such 𝑠 and 𝑰, by letting 𝑽 = 0 in Eq. (4), we get the 
following generalized eigenvalue problem: 
 𝒁̀(?,)𝑰 = 𝜆𝒁̀(,)𝑰, (5) 
where 𝜆 = −𝑠V = 𝜔V is the eigenvalue; i.e., the eigenvalue is the square of the resonant angular 
frequency. 𝑁 sets of 𝜆 and 𝑰 satisfy the following orthogonality: 
 𝑰1k 𝒁̀(?,)𝑰( = 𝛿1(𝑍(

(?,), (6) 
 𝑰1k 𝒁̀(,)𝑰( = 𝛿1(𝑍(

(,), (7) 
where 𝑰1  and 𝑰(  are the 𝑚 th and 𝑛 th modal current vectors, respectively, and 𝛿1(  is the 
Kronecker delta. This physically means that there is no capacitive and inductive coupling between 
modal currents. 

By using the elements of the 𝑛th modal current vector 𝑰( = [𝐼,( ⋯ 𝐼*(]k, the corresponding 
modal current 𝑱((𝒓) can be expressed as follows: 

 𝑱((𝒓) = & 𝐼1(𝑭1(𝒓)
*

1+,

.  

By using the modal currents, the current distributions on conductors are expanded as follows: 

 𝑱(𝒓) = & 𝐼(= 𝑱((𝒓)
m

(+,

,  

where 𝐼(=  is the 𝑛th modal current coefficient, and 𝑀 is the number of considered modes. It is 
expected that the current distributions can be approximated only by a small number of modal 
currents, the resonant frequencies of which are close to the frequency of interest. 

In problems involving multiple conductors, such as WPT systems, the eigenmode analysis 
described above is carried out for each conductor, and the current distributions of each conductor are 
expanded into several dominant modal currents. 

3. Application to a WPT system 
Fig. 1 shows the WPT system used in this work. Each Tx and Rx side consists of a feeding loop 

and a resonance coil, and they are symmetrically placed with respect to the 𝑥𝑦-plane of 𝑧 = 0. In 
addition, 𝑎 = 0.8 mm is the radius of the wires, 𝑏R = 93 mm is the radius of the feeding loops, 
𝑏 = 118 mm is the radius of the coils, 𝑐 = 8 mm is the pitch of the coils, 𝑑R = 280 mm is the 
distance between the Tx and Rx loops, 𝑑 = 200 mm is the distance between the Tx and Rx coils, 
and 𝑁 = 10 is the number of turns of the coils. In addition, the conductivity of the wires is 𝜎 = 58 
MS/m. These parameters were determined such that the transmission coefficient |𝑆V,| in the 50-Ω 
system is maximum at around 13.56 MHz. 

Fig. 2 plots the first to the fourth modal currents, the resonant frequencies of which are in 
ascending order. Here, the modal currents are normalized such that the mean square values are 1/2. 
The resonant frequencies of the respective modal currents can be obtained as 𝑓 = √𝜆/(2𝜋), and 
their values are 𝑓, = 13.21 MHz, 𝑓V = 33.58 MHz, 𝑓{ = 54.16 MHz, and 𝑓} = 75.46 MHz, 
respectively. Among them, the fundamental mode, with a resonant frequency of 𝑓, = 13.21 MHz, 
is dominant in the frequency range for the WPT system considered in this work. 
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Fig. 3 plots the frequency dependences of (a) the reflection coefficient |𝑆,,|, (b) the transmission 
coefficient |𝑆V,|, (c) the radiation loss 𝑃�, and (d) the conduction loss 𝑃C. Here, the available power 
of the Tx port is assumed to be 1 W. In addition, the Laurent series of the self-/mutual impedance is 
approximated only by the lowest- to fourth-degree terms. In Fig. 3, “Direct” indicates the direct 
solution obtained without the eigenmode analysis, and its validity has been already confirmed in [7]. 
On the other hand, “Modal” indicates the modal solution considering only the fundamental mode. 
According to the results, the behavior of the system can be almost approximated only by the 
fundamental mode. Incidentally, if the maximum number of modes is 𝑀 ≥ 2, both the direct and 
modal solutions perfectly agree with each other even in the range of |𝑆,,| < −40 dB. However, in 
fact, such a slight difference has little impact on the system. Therefore, the required number of 
modes is concluded to be 𝑀 = 1 in this case. 

  

Because the currents of the coils can be approximated only by the fundamental mode, the 
behavior of the WPT system can be represented by the equivalent circuit model shown in Fig. 4, 
where 𝑉R is the electromotive force of the Tx port, and 𝑅R = 50 Ω is the input/output impedance 
of the ports. Because the equivalent-circuit parameters are expressed by using the self-/mutual 
impedances between the modal currents, here we describe their notational convention. First, the 
modal currents of the respective elements are denoted such that: 𝑱kR(𝒓) is the modal current of the 
Tx loop; 𝑱k,(𝒓) is the fundamental modal current of the Tx coil; 𝑱AR(𝒓) is the modal current of the 
Rx loop; and 𝑱A,(𝒓) is the fundamental modal current of the Rx coil. In addition, the self- and 
mutual impedances between the modal currents are denoted such that: 𝑍kR,kR is the self-impedance 
of 𝑱kR(𝒓); 𝑍k,,A, is the mutual impedance between 𝑱k,(𝒓) and 𝑱A,(𝒓), and so on. Furthermore, in 
the Laurent series expansion of the self-/mutual impedance, the coefficient for 𝑠P is denoted by a 
superscript (𝑖) such as 𝑍k,,A,

(P) . 
The capacitances in Fig. 4 are expressed as follows: 

 𝐶k, = 𝐶A, =
𝑍k,,k,
(?,) − 𝑍k,,A,

(?,)

𝑍k,,k,
(?,) 𝑍A,,A,

(?,) − 𝑍k,,A,
(?,) 𝑍A,,k,

(?,) , 𝐶k,,A, =
𝑍k,,A,
(?,)

𝑍k,,k,
(?,) 𝑍A,,A,

(?,) − 𝑍k,,A,
(?,) 𝑍A,,k,

(?,) .  

The inductances in Fig. 4 are expressed as follows: 
 𝐿k1,k( = 𝐿A1,A( = 𝑍k1,k(

(,) , 𝐿k,,A, = 𝑍k1,A(
(,) , 𝑚, 𝑛 = 0,1.  
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Fig. 1. WPT system.
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The dependent voltage sources represent the voltage drops due to the modal impedance components 
that are proportional to 𝑠V, 𝑠{, and 𝑠}; these are expressed as follows: 

 Δ𝑉k1 = &&𝑠P𝑍k1,k(
(P) 𝐼k(

}

P+V

,

(+R

+&&𝑠P𝑍k1,A(
(P) 𝐼A(

}

P+V

,

(+R

,  

 Δ𝑉A1 = &&𝑠P𝑍A1,k(
(P) 𝐼k(

}

P+V

,

(+R

+&&𝑠P𝑍A1,A(
(P) 𝐼A(

}

P+V

,

(+R

,  

The impedances 𝑍kR,kRC = 𝑍AR,ARC  and 𝑍k,,k,C = 𝑍A,,A,C  are ones due to the surface impedance of 
wires and represent the conduction loss. 
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4. Conclusion 
This paper describes the basic concept of the IEM, and then shows an example application to a 

wireless power transfer system. In the further studies, the author will apply the IEM to the circuit 
modeling of intrabody communication channels. 
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